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1 Overview

Languages in use for high performance computing at the laboratory - Fortran (f77 and f90),
C, and C++ - have many years of development behind them and are generally considered
the fastest available. However, Fortran and C do not readily extend to object-oriented
programming models, limiting their capability for very complex simulation software. C++
facilitates object-oriented programming but is a very complex and error-prone language.
Java offers a number of capabilities that these other languages do not. For instance it
implements cleaner (i.e., easier to use and less prone to errors) object-oriented models than
C++. It also offers networking and security as part of the language standard, and cross-
platform executables that make it architecture neutral, to name a few. These features have
made Java very popular for industrial computing applications. The aim of this paper is to
explain the trade-offs in using Java for large-scale scientific applications at LLNL.

Despite its advantages, the computational science community has been reluctant to
write large-scale computationally intensive applications in Java due to concerns over its
poor performance. However, considerable progress has been made over the last several
years. The Java Grande Forum [1] has been promoting the use of Java for large-scale
computing. Members have introduced efficient array libraries, developed fast just-in-time
(JIT) compilers, and built links to existing packages used in high performance parallel
computing. For example, mpiJava [2] is an interface between Java and the MPI message
passing library. In addition, at the ACM 2001 Java Grande/ISCOPE Conference [3], a
number of researchers reported that their Java codes closely matched or even exceeded the
performance of comparable C and Fortran implementations. The results primarily focused
on the timing of serial kernels and often used proprietary (i.e., not publicly available)
implementations of Java compilers. A comprehensive analysis of Java for use in large-scale
scientific applications, i.e., an analysis of the memory usage, performance with publicly
available compilers, performance on distributed memory parallel computers, and overall
application performance (as opposed to kernel performance), was not discussed.

This study investigates performance of scientific applications written in Java on a
number of different systems at LLNL. The first section of this report discusses several
benchmark applications and compares memory and run-time performance of the Java
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benchmarks (run sequentially) to comparable applications written in C. The next section
discusses parallel performance of Java using mpiJava [2] on several systems including a Sun
cluster of workstations and the IBM Blue-Pacific parallel system at LLNL and provides a
performance comparison of mpiJava to standard MPI. The last section discusses the parallel
performance of two scientific applications that use mpiJava. We conclude with remarks on
our findings and recommendations for future work.

2 Benchmarks

The Edinburgh Parallel Computing Center (EPCC) [4] at the University of Edinburgh
has developed a benchmark suite of applications [5] aimed at testing aspects of Java
execution pertinent to large-scale scientific applications. The benchmarks consist of low-
level operations, such as loop overheads and various math functions, kernels such as heap-
sort, Fast Fourier Transforms, etc., and so-called large-scale applications like computational
fluid dynamics, molecular dynamics simulations, etc. These benchmarks are written in Java
and come with comparable codes written in C by which we can compare performance. Due
to the limited time to complete this study, we investigated performance only of the large-
scale application suite.

The applications we investigated were chosen for their similarity to applications codes
used at LLNL. Specifically, we selected an Euler computational fluid dynamics application,
a molecular dynamics application, and a ray tracer graphics-based application.

The Euler application solves time-dependent Euler equations for flow in a channel with
a bump on one of the walls. It uses a structured irregular N x 4N mesh, and the solution
method is a finite volume scheme using fourth order Runge-Kutta with 2nd and 4th order
damping. The solution is iterated for 50 steps. It was written by David Y. Oh of the
Computational Aerosciences Laboratory at MIT. A web-based simulation is available online
at http://raphael.mit.edu/Java/.

The Molecular Dynamics application is an N-body code which models particles
interacting under a Lennard-Jones potential in a cubic spatial volume with periodic
boundary conditions. The original Fortran code was written by Dieter Heerman, Institut
fur Theoreische Physik and converted to Java by Lorna Smith, EPCC.

The ray tracer application renders a scene with 64 spheres. The resolution of the render
is N x N pixels.

Different sizes were chosen, as shown in table 1. The size of some of the benchmarks
was manually extended to increase the problem size.

Problem Case A Case B Case C Case D Case E

Euler - Gridcells 16.7K 37.3K 148.4K 331.8K 475.2K
Molecular Dynamics - Particles 2048 8788 – – –
Ray Tracer - Pixels 22.5K 250K – – –

Table 1

Problem sizes of Java benchmark calculations.

3 Serial Performance

The Euler Gas Dynamics and Molecular Dynamics applications discussed in section 2 have
implementations in both Java and C. The algorithms and problem conditions for the two
languages are identical. The difference between the Java and C implementations is that
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Fig. 1. Serial runtime for Java and C versions of Euler and Molecular Dynamics JGF

benchmarks on Sun Ultra 100.
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Fig. 2. Ratio of Java and C serial runtimes for Euler and Molecular Dynamics JGF

benchmarks on Sun Ultra 100.

the Java version uses some high level objects (as in an object-oriented implementation)
whereas the C version uses a purely structured coding style. We compare the performance
of the Java and C versions of these applications, both in solution time and in memory, on
several computer systems at LLNL.

Figures 1a and 1b show the measured run-times of the C and Java versions of the
Euler and Molecular Dynamics applications using various problem sizes run on a Sun Ultra
80. This machine has a single 440MHZ Sparc processor and 4 GB RAM. The machine
was essentially dedicated as there were no other significant-sized jobs running while these
timings were performed. The different cases represent different problem sizes, as discussed
in section 2. The Sun Workshop Pro C compiler, cc, with optimization level 3 (i.e., -O3) was
used to compile the C cases. The standard javac compiler and JVM interpreter included
with the Java v1.2 release were used for the Java code. Figures 2a and 2b show the ratio
of the solution time using Java to the time using C.

The run-times for the Java version of the Euler application were comparable to those
for the C version. The ratio of Java to C was consistently between 1.2 to 1.25 for the
different problem sizes tested, although case D shows slight deviation with a ratio of 1.35.
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Fig. 3. Serial performance for Java and C versions of Euler and Molecular Dynamics JGF

benchmarks on IBM ASCI Blue-Pacific.
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Fig. 4. Ratio of serial benchmark performance between Java and C on IBM ASCI Blue-Pacific.

The run-times for the Molecular Dynamics code show a greater disparity. The ratio
between the Java and C run-times for this case varied from 1.7 to 2.0. We postulate that the
performance degradation for the Java version of this application, relative to C, results from
a higher number of memory fetches. The Molecular Dynamics code uses much less memory
than the Euler case and does many more numerical operations on a particular piece of data
once it has been accessed from memory. If the compiler is smart enough to recognize this
behavior, it can optimize the code to assure that often-used data is maintained in cache
rather than accessing it from main memory. We do not expect the Java compiler to be as
good as its C counterpart in recognizing such constructs since it is not generally used for
performance-based applications.

Figures 3a and 3b, and figures 4a and 4b, show results for the same two problems run on
a single processor of an SMP node on IBM ASCI Blue-Pacific. Each node of Blue contains
four 332MHZ PowerPC 604e processors with access to 1.5 GB RAM. The memory is shared
between all 4 processors on a node. IBM’s xlc compiler with optimization level 3 was used
to compile the C cases. The standard javac compiler included with the Java 1.3 release was
used for the Java code. The ratio of Java to C for the Euler application run on a single



5

processor of Blue varied between 2.3 to 2.8 for the various problem sizes tested. For the
molecular dynamics case, the ratio varied between 2.4 and 3.3.

The run-time ratios between Java and C are significantly larger on the IBM than on
the Sun. We postulate that the standard Java compiler and JVM are less optimized for the
IBM SP system than they are for Sparc systems. This stands to reason since Sun releases
Java and developers are likely more focused on Sun systems. It should be noted, however,
that IBM has released optimized just-in-time (JIT) JVMs for Java which claim to have
considerably better performance than the standard JVMs. Because these are only available
for evaluation and because root access is generally required to install them, we were unable
to evaluate their performance.

3.1 Memory Usage

Memory is a primary computational limitation for many large-scale scientific applications.
While we found a number of studies in the literature that addressed the speed of Java relative
to other languages, we did not find any memory usage comparisons. This motivated us to
investigate memory usage characteristics of Java relative to C.

We collected memory usage statistics for Java and C implementations of the Euler code
on the Sun Ultra 80 and IBM Blue-Pacific. After some analysis, we determined there were
four different measures of memory to consider during the study, listed here in order of
decreasing size:

1: The total memory, which includes the memory requested by the JVM to
execute the Java byte-code together with the overhead for the JVM itself.

2: The block of memory that the JVM reserves to allow the application to
have access to (reported by Java internals).

3: The memory resident within the program at a given time.

4: The amount of memory the application actually uses inside the JVM.

The total memory and the resident memory (i.e., 1 and 3) are measured using by the
Unix top utility. The total memory is the reported total “size” of a process while the
resident memory is the reported “resident” memory of the process. The block of memory
reserved by the JVM and the amount actually used by the application (i.e., 2 and 4) are
reported by direct calls to Java internals (e.g., Runtime.getRuntime().totalMemory()).

Resident Size JVM Overhead

Java Loop 11.0 MB 31.0 MB 20.0 MB
Java Sleep 7.5 MB 31.0 MB 23.5 MB
C Loop 672 KB 912 KB not applicable
C Sleep 736 KB 912 KB not applicable

Table 2

Memory Usage Results for “Hello World” programs reported by top.

3.1.1 Hello World We determined early-on that the JVM interpreter that runs the
compiled Java executable invokes a certain amount of memory overhead. In order to
characterize this amount, we constructed two “Hello world” programs in both C and Java
and tested them on the Sun Ultra 80. The first program contained a loop around a print
statement so that the program would run long enough to measure memory statistics. The
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second contained a system call to sleep(). Table 2 reports the memory usage statistics using
top (i.e., 1 and 3 in the list described above) while table 3 reports memory statistics as
reported by Java internals (i.e., 2 and 4 in the above list).

Total Free In Use

Java Sleep 8.0 MB 7.8 MB 133 KB
Java Loop 8.0 MB 7.5 MB 437 KB

Table 3

Memory Usage results for Java “Hello World” program reported by Java internals.

The total size of both Java “Hello World” programs reported by top was 31 MB. Of this
31 MB, only 8 MB was available to the program, but Java internal routines reported it was
actively using only 133 KB. Similar C programs required less than 1 MB (by all measures)
of memory. Interestingly, top reports the resident memory usage for the two Java programs
differed by 3.5 MB while the memory usage reported by Java internals varied only by 300
KB.

We infer from these statistics that there is a general memory overhead associated with
the JVM. We also noticed that the program has a segment of memory allocated for it to
use which is larger than it actually needs. We defined this overhead to be the difference
between the total memory reported by top and the total memory available to the program
as reported by Java internals. The JVM memory overhead ranged from 20-23.5 MB for the
“Hello World” programs (see table 2).

3.1.2 Euler As the Euler code was the most memory intensive application of the
benchmarks provided in the suite, we report memory usage statistics for it on the Sun
Ultra 80 and ASCI Blue-Pacific (see table 4 and figure 5). On the Blue-Pacific system, we
could not run top as we do not have login access to the nodes that the program actually
runs on. However, there is another utility on Blue, jr, which allows us to collect memory
statistics for each node of a given job and we used those statistics rather than top’s. We
believe the output of the jr utility corresponds with top’s resident memory statistic although
documentation on jr [6] did not clarify that.

Euler C - top Java - internals Java - top

Sun Ultra 80

Case A 6.8 MB 6.3 MB 19.0 MB
Case B 13.0 MB 13.7 MB 28.0 MB
Case C 50.0 MB 53.3 MB 76.0 MB
Case D 110 MB 119 MB 152 MB
Case E 135 MB 146 MB 188 MB

IBM ASCI Blue-Pacific

Case A 6.1 MB 9.8 MB 20.1 MB
Case B 13.0 MB 21.1 MB 35.2 MB
Case C 50.2 MB 81.9 MB 123.1 MB
Case D 112 MB 183 MB 251 MB
Case E 138 MB 225 MB 271 MB

Table 4

Comparison of Java and C Memory Usage results for the Euler benchmark application.
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Fig. 5. Memory usage of Euler benchmarks on Sun Ultra 80.

Five different problem sizes were tested. Table 4 and figure 5 show the total memory
as reported by top for C and Java implementations (labeled “C-top” and “Java-top”,
respectively) and internal memory used by the Java application as reported by Java
internals (labeled “Java”). We characterize the JVM overhead as the difference between
the memory used by the Java application reported by Java internals and the total memory
of the Java process reported by top.

On the Sun, the internal memory used by the Java application is comparable to C.
The internal memory used by the Java version is about 8% larger than C for the largest
case. The JVM overhead varies from 13MB for the smallest case, which is comparable to
that observed for the “Hello World” cases, to 42MB for the largest case. We infer from
these results that the JVM overhead can significantly add to the memory requirements for
smaller-scale Java applications but that it constitutes a proportionately smaller percentage
for larger scale applications. On the largest case tested, the Java implementation required
40% more total memory than the C implementation, mainly due to the JVM overhead.

On Blue-Pacific, the variation of the overhead with problem was more pronounced. In
case E (the largest), the Java internal memory on the Sun is only 11 MB more than the
memory used by the C version, but it is 87MB more on the IBM. The overhead of the JVM
also seemed to grow with the problem size. The reasons for this are unclear and we were
unable to characterize the nature of this relationship. One reason could be the quality of
the JVMs. In the serial run-time results, we found Java code ran slower, proportional to
C, on the IBM than it did on the Sun. This led us to suspect that the standard JVM is
less optimized for the IBM SP system than they are for Sparc systems. The same could be
true of memory management within the JVM. The results may differ if we were to use one
of the more advanced proprietary JIT-enabled JVMs from IBM. Further study of how Java
allocates and manages memory would be useful to address this issue in future studies.

In spite of the relatively poor memory results we find for Java on Blue-Pacific, we are
encouraged by the Sun results because they indicate that with a proper JVM, the memory
requirements of Java applications may be comparable to that of C applications. Of course,
there will always be some overhead associated with Java due to the JVM. While this
overhead can be significant with small-scale applications, it constitutes a smaller percentage
of the overall memory used for large-scale applications that are of interest to LLNL.
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Fig. 6. Performance of MPICH and mpiJava on Sun cluster; Performance of IBM’s MPI and

mpiJava on 2 nodes of ASCI Blue-Pacific.

4 Parallel Performance

This section documents the parallel performance of Java using mpiJava. We tested parallel
performance in two separate ways. First we tested the performance of mpiJava in and
of itself by running several benchmarks provided with mpiJava on systems at LLNL to
investigate the costs of performing communication through the mpiJava interface. Second,
we ran several of the parallel applications benchmarks provided by the EPCC in their
benchmarks suite [5] on larger scale parallel systems to investigate scaling qualities of Java
applications.

The mpiJava package provides an object-oriented Java interface to the MPI standard,
for use on parallel or distributed computing platforms. The release includes Java Native
Interface (JNI) C stubs that bind the Java interface to an underlying native MPI C interface
such as MPICH. Also included is a comprehensive test suite for the Java interface, created
by translating the IBM MPI test suite to Java, along with some simple examples and
demos [7].

4.1 mpiJava Performance

We tested mpiJava on systems at LLNL by running several of the mpiJava benchmarks.
One of the examples included had implementations in both C and Java. This “PingPong”
program sends increasing sized messages between processes and measures bandwidth as
well as latency of MPI sends and receives. In this context, it serves as a way of measuring
overhead associated with Java’s calls to the native MPI libraries. We found no appreciable
overhead in using mpiJava as compared to C/MPICH (see figure 6) on the cluster of CASC
workstations or as compared to the C/IBM MPI on ASCI Blue-Pacific1. In fact, during
some of the runs on both systems, the mpiJava version performed slightly better than the
C version–we attribute these differences (both positive and negative) to system noise.

1We tested both inter and intra-node performance ASCI Blue-Pacific. There was little difference in

performance between the C and the Java version of the PingPong program in either case. Figure 6 includes

the inter-node results.
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4.2 Parallel Benchmark Application Performance

Several of the application codes provided in the EPCC’s benchmark suite contained parallel
implementations (in Java only), including the Molecular Dynamics application discussed
in section 3. Unfortunately, the Euler case we tested in serial did not contain a parallel
implementation, so we had to substitute another parallel benchmark. We chose to test the
parallel implementation of the Ray Tracer benchmark. Ray tracing is a common algorithm
used in scientific visualization.

Figures 7a and 7b show the parallel performance of the the Molecular Dynamics and
Ray Tracer applications on IBM ASCI Blue-Pacific. Two problems, of increasing size
(denoted case A and case B) were run. Both cases are are fixed in size on all processors so
traditional speed-up is being measured. It is clear that both algorithms show some degree
of scalability. As expected, better scaling is observed for the larger sized problems.

Unfortunately, none of the C versions of the benchmarks were implemented in parallel
so it is difficult to compare the parallel performance of Java and C. However, based on
results of the serial and mpiJava tests conducted so far, we postulate that the Java cases
would probably show similar degrees of scaling to C and would be about 2 to 3 times slower
overall.

The main conclusion drawn from parallel tests of these benchmarks is that it is possible
to run reasonably large-scale scientific applications written in Java on ASCI-class systems.
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Parallel Speedup on IBM ASCI Blue Pacific
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Fig. 7. Parallel performance of Molecular Dynamics and Ray Tracer benchmarks on ASCI

IBM Blue-Pacific. Cases A and B represent different sized problems, with case B the larger of the

two.

5 Parallel Performance

5.1 Caveats, Gotchas, etc.

This section describes some of the difficulties this study presented.
We attempted to use mpiJava on the Tera Cluster 2000 (TC2K) system at LLNL. Unlike

the Linux and Sun clusters which use MPICH, TC2K uses a proprietary version of MPI
from Compaq that is optimized for the inter-node communications that occur on TC2K.
The proprietary version contains an identical API to MPICH, so applications which run
with MPICH generally run with the proprietary MPI by simply linking with a different set
of libraries. However, mpiJava is more tightly coupled with the MPICH libraries and we
ran into some problems when trying to link with the proprietary version. Hence, we were
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unable to get mpiJava to work on TC2K and, consequently, could not do any parallel tests
on the machine. It would be useful to collaborate with the maintainer and developer of
mpiJava, Bryan Carpenter, in order to use mpiJava on this and other machines at LLNL.

Some of the benchmarks provided by the EPCC had bugs which were difficult to
uncover. We were able to detect several bugs and send fixes to the EPCC for the Molecular
Dynamics simulation. In particular, there was a problem with the way MPI Allreduce calls
were being made, causing them to fail. As they were not failing consistently in the same
place, it was not clear whether they were failing due to a system timeout, as has been
experienced by both authors on the CASC Sun Cluster or for a host of other potential
possibilities. This caused considerable difficulty as it was not clear whether the problem
was with the mpiJava installation, how we were running the job, or a bug in the code.

The wrappers to run mpiJava were written to use mpirun or IBM’s Load Leveler. These
were not written with the the batch scheduling system, DPCS, in mind and we had to
modify them (sometimes substantially) in order to get them to work. Also the first version
of mpiJava that we tried would not compile properly on Blue due to a linking problem.

We asked LC to install more recent JVMs so that we could test some of the examples
on ASCI Blue-Pacific, the Linux/Alpha cluster and the Compaq Tera 2000 system. This
took considerable time as the system administrators on the larger systems are rather busy.
It was unfortunate that root access was necessary to install JVMs for the TC2K machine
and on ASCI Blue-Pacific; it would have been useful to try out some of the newer compilers
to see what performance improvements have been made.

It should be noted that none of the benchmark applications would be considered a
true large-scale application at the laboratory. The benchmark codes were not particularly
memory intensive and perhaps were not the ideal codes to test for use at LLNL. It would be
interesting to see how a “real” large-scale application code ported to Java would perform
on LLNL systems. Due to the time constraints of this study, we could not investigate this
further.

6 Conclusions

A general perception exists amongst the computational science community that Java is
too slow for large-scale scientific applications. A number of studies have begun to counter
this notion. Our analysis of Java on high-performance ASCI-class systems in this study
seems to indicate that Java could be suitable for the development of large-scale scientific
applications.

We focused our attention on three particular areas of Java performance; serial
performance of Java relative to C, the performance of the mpiJava interface relative to
currently-used MPI implementations, and memory overhead of Java relative to C. Serial
and parallel tests were performed on different systems at LLNL.

The serial performance of Java applications were 1.1 to 2.0 times slower than the
performance of comparable C benchmarks on a Sun. On IBM ASCI Blue-Pacific, Java
applications were 2.5 to 3.3 times slower. We tested only standard, non-proprietary, JVMs
so this result could change as faster JVMs are continually being developed by a variety of
vendors. The performance of the mpiJava interface was essentially identical to the MPI
implementations that are currently used for scientific applications at LLNL, suggesting that
use of Java would not invoke any additional overhead in communications costs for parallel
applications. Indeed, we tested Java applications that use mpiJava on up to 64 processors of
Blue-Pacific and found reasonable scaling, although we could not make a direct comparison
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between Java and C for parallel performance because we did not have a parallel version of
the C benchmark. We found that Java applications use more memory than C, particularly
on Blue-Pacific. The overhead is primarily from the JVM and amounted to between 13 MB
and 42 MB on the Sun. For larger-scale applications, it does not appear that this overhead
would be a severe detriment.

One obvious advantage of using Java rather than C or Fortran is that it is an object-
oriented language. A performance study comparing Java to C++, the most frequently used
language for object-oriented programming at LLNL, would be an interesting topic for future
work. It seems that using Java in the same way that C++ is being used at the laboratory is
probably the most natural fit. It would be interesting to see a truly large-scale application
written in Java to compare to it’s C++/C or C++/Fortran counterpart.

Aside from purely performance related issues, we found a number of advantages with
Java over traditional C and Fortran. Java code is significantly easier to debug and
link together. A number of nice development environment’s (e.g., IDEs) exist for Java
which made programming quite easy. Executables run unchanged on multiple platforms 2.
Automatic garbage collection makes memory management extremely easy. Finally, because
Java is used much more frequently today in the software development community than C
or Fortran, there are a host of useful resources (e.g., development environments, re-usable
code, books, tools) that could be leveraged for development of scientific software at LLNL.

Our experiences with Java in this study convinced us that the performance loss and
memory overhead we observed is not detrimental enough to outweigh the advantages
discussed above. The performance of Java, both in speed and memory, seems to rest
squarely on the JVM. We found very different results for the JVMs implemented on the
Sun and IBM. This work only investigated standard freely-available JVMs that are 1-2
years old. Future work should address performance of more recent proprietary JVMs on
even larger problems.
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2We were able to compile a Java byte-code on a 200MHz Pentium at home and run it unchanged on

IBM ASCI Blue-Pacific
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